728x90 인공지능33 [AI 수학] 인공지능 수학 - 5. 고유값과 고유 벡터, 고윳값 분해 인공지능을 위한 기초수학 교재를 통해 공부한 내용을 서술하였습니다.고윳값, 고유벡터, 고윳값 분해 📌 행렬의 선형 변환이란?더보기행렬 A는 벡터에 작용하는 선형 변환입니다.즉, 어떤 벡터 $v$에 행렬 A를 곱하면 새로운 벡터가 됩니다: $$Av$$ ➡️ 예를 들어, A가 다음과 같은 $2 \times 2$ 행렬이라고 해볼게요.$$ A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \\ \end{bmatrix}$$벡터 $\begin{bmatrix} x \\ y \end{bmatrix}$에 대해 행렬 A의 변환은: $$ Av = \begin{bmatrix} 2 & 1 \\ 1 & 2 \\ \end{bmatrix}\begin{bmatrix} x \\ y \end{bmatrix} = \begin.. 2025. 3. 17. [리뷰] Mamba: Linear-Time Sequence Modeling with Selective State Spaces Mamba란?기존 Transformer과 RNN이 가진 연산량 문제와 길이 의존성 문제를 해결하는 새로운 모델 State Space Model(SSM)에 기반하여 만들어진 딥러닝 모델 ➡️ Self-Attention 없이 Transformer 수준의 성능을 달성하면서도 연산 속도 및 메모리 사용량을 개선한 것이 특징 ✅ 기존 Transformer는 어떤 문제를 가지고 있을까? 먼저, 트랜스포머는 최고의 성능을 가지는 시퀀스 모델. 입력 값이 무엇이든 시퀀스의 이전 토큰을 참고할 수 있어서 그 표현을 도출 가능 또한, Attention 매커니즘을 활용하여 복잡한 문맥 정보를 효과적으로 학습할 수 있음 하지만, Transformer 구조에는 몇 가지 치명적인 한계점이 존재 복잡도가 입력 길이에 대해 이차 .. 2025. 3. 16. [리뷰] Tacotron2 알아보기 + 논문 리뷰 NATURAL TTS SYNTHESIS BY CONDITIONING WAVENET ON MEL SPECTROGRAM PREDICTIONS 바로가기 Tacotron2는 2018년 구글에서 발표한 새로운 TTS 모델 기존의 TTS 시스템은 복잡한 전처리 및 음성 합성 과정이 필요했지만,Tacotron 2는 이를 딥러닝 기반으로 통합해 자연스러운 음성을 생성 ➡️ Tacotron 2의 주요 특징:문자(character) 입력 → 음성 출력까지 엔드투엔드(End-to-End) 학습 가능Mel Spectrogram을 중간 단계로 사용WaveNet 기반 Vocoder 사용 → 고품질 음성 생성 가능 AbstractTacotron2는 character embedding을 mel-spectrogram으로 매핑하는 r.. 2025. 3. 13. [신호처리] 6. Mel-Filter Bank/MFCC (Mel-Frequency Cepstral Coefficient) MFCC란? 음성 인식과 관련해 불필요한 정보는 버리고 중요한 특질만 남긴 피처(feature)인간의 말소리 인식에 중요한 특질들이 추출된 결과 입력 음성을 짧은 구간(대개 25ms 내외)으로 나눔 $\to$ 쪼개진 음성을 frame이라고 함 프레임 각각에 푸리에 변환(Fourier Transform)을 실시 $\to$ 해당 구간 음성에 담긴 주파수 정보를 추출 모든 프레임 각각에 푸리에 변환을 실시한 결과를 스펙트럼(spectrum)이라고 함 스펙트럼에 사람의 말소리 인식에 민감한 주파수 영역대는 세밀하게 보고 나머지 영역대는 상대적으로 덜 촘촘히 분석하는 필터(Mel Filter Bank)를 적용 $\to$ 멜 스펙트럼(Mel Spectrum) 이후 로그를 취한 것이 바로 로그 멜 스펙트럼(log-.. 2025. 2. 24. [파이토치] 파이토치로 Mel-Spectrogram 생성해보기 PyTorch의 torchaudio.transforms를 사용하여 오디오 파일에서 Mel-Spectrogram을 생성하는 방법 1. 필요 라이브러리 설치아래 명령어로 설치pip install torchaudio2. 기본적인 Mel-Spectrogram 생성 코드import torchaudioimport torchaudio.transforms as transformsimport torchimport matplotlib.pyplot as plt# 1️⃣ 오디오 파일 로드waveform, sample_rate = torchaudio.load("example.wav") # 파일 경로 입력# 2️⃣ Mel-Spectrogram 변환기 정의mel_transform = transforms.MelSpectrogram.. 2025. 2. 20. [리뷰] Attentron: Few-Shot Text-to-Speech Utilizing Attention-Based Variable-Length Embedding 하이퍼커넥트 AI Lab에서 발표한 논문으로, Interspeech 2020에 실려있음이 논문에선 제한된 데이터만을 가지고 학습 가능한 TTS 시스템을 연구함 TTS 연구에서 가장 활발하게 사용되고 있는 Tacotron2 모델을 베이스로 연구하였다고 함 Attentron 모델은 attention을 활용하여 따라하고자 하는 화자의 특징에 대한 정보를 스펙트로그램으로부터 직접 가져와 사용 Abstract적은 양의 데이터만으로도 화자를 복제할 수 있는 few-shot TTS 시스템을 개발Attentron이라는 few-shot TTS 모델을 제안 Attentron은 두 개의 특수한 인코더를 가지고 있는데,fine-grained EncoderAttention을 사용하여 가변 길이의 스타일 정보 추출coarse-.. 2025. 2. 20. 이전 1 2 3 4 ··· 6 다음 728x90